#### **Graphical Abstracts**

#### Influence of functional groups on the in vitro anticoagulant activity of chitosan sulfate

Carbohydr. Res. 2003, 338, 483

Ronghua Huang, Yumin Du, Jianhong Yang, Lihong Fan

Department of Environment Science, Wuhan University, Hubei, Wuhan 430072, China

Chitosan sulfate from chitosan was chemically modified to get propanoylated, hexanoylated or quarternized derivatives. The influences of these groups on the anticoagulant activity are discussed.

## Synthesis, intramolecular migrations and enzymic hydrolysis of partially pivaloylated methyl α-D-mannopyranosides

Srđanka Tomić, Vesna Petrović, Maja Matanović

Department of Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, HR-10000 Zagreb, Croatia

## A practical synthesis of a $(1 \rightarrow 6)$ -linked $\beta$ -D-glucosamine nonasaccharide

Carbohydr. Res. 2003, 338, 495

Feng Yang, Yuguo Du

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Academia Sinica, P.O. Box 2871, Beijing 100085, PR China

# First total synthesis of $\alpha$ - $(2 \rightarrow 3)/\alpha$ - $(2 \rightarrow 6)$ -disialyl lactotetraosyl ceramide and disialyl Lewis A ganglioside as cancer-associated carbohydrate antigens

Takayuki Ando, Hideharu Ishida, Makoto Kiso

Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan

Carbohydr. Res. 2003, 338, 515

#### New polygalacturonases from *Trichoderma reesei*: characterization and their specificities to partially methylated and acetylated pectins

Saleh A. Mohamed, a,b Tove M.I.E. Christensen, a Jorn Dalgaard Mikkelsen a

<sup>a</sup>Danisco Innovation, Langebrogade 1, DK-1001 Copenhagen K, Denmark

Two extracellular isoenzymes of polygalacturonases PG1 and PG2 were isolated from 3-day-old culture filtrates of *Trichoderma reesei*. The two enzymes were purified to homogeneity by ion-exchange, gel filtration and hydrophobic interaction chromatographies.

### Isolation and characterization of *O*-acetylated glucomannans from aspen and birch wood

Carbohydr. Res. 2003, 338, 525

Anita Teleman, a Maria Nordström, Maija Tenkanen, Anna Jacobs, Olof Dahlman

<sup>a</sup>Swedish Pulp and Paper Research Institute, STFI, Box 5604, SE-114 86 Stockholm, Sweden <sup>b</sup>VTT Biotechnology, P.O. Box 1500, FIN-02044 VTT, Finland

$$\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\beta-D-Man$$

#### Study on lyotropic liquid-crystalline properties of trimethylsilyl hydroxypropylcellulose

Carbohydr. Res. 2003, 338, 535

Caiqi Wang, Yuping Dong, Huimin Tan

School of Chemical Engineering and Material Science, Beijing Institute of Technology, 5 South Zhongguancun St., Beijing 100081, People's Republic of China

The liquid crystalline nature of TMS-HPC/acetone solution was confirmed by PLM and the mechanism of liquid crystallization was studied by FTIR and WAXD methods.

$$\begin{array}{c|c} & \text{CH}_2\text{O}(\text{CH}_2\text{CH}(\text{CH}_3)} \overset{\bullet}{Q}_X^{\mathsf{TMS}} & \text{R: H or } -\text{CH}_2\text{CH}(\text{CH}_3)\text{O-H}} \\ & \text{or } \cdot \left(\text{CH}_2\text{CH}(\text{CH}_3)\text{O}\right)_X^{\mathsf{TMS}} \\ & \text{of } \cdot \left(\text{CH}_2\text{CH}(\text{CH}_3)\text{O}\right)_X^{\mathsf{TMS}} \\ & \text{of } \cdot \left(\text{CH}_2\text{CH}(\text{CH}_3)\text{O}\right)_X^{\mathsf{TMS}} \\ \end{array}$$

# Microscopy and calorimetry as complementary techniques to analyze sugar crystallization from amorphous systems

María F. Mazzobre, a José M. Aguilera, María P. Buera

<sup>a</sup>Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina

<sup>b</sup>Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile

Polarized light videomicroscopy (PLV) allowed detecting morphological aspects and the growth of sugar crystals at an earlier stage than did differential scanning calorimetry (DSC). DSC gave a precise account of massive crystallization onset in amorphous systems. PLV analysis of a large number of samples showed similar temperature dependence to that from the DSC data.

<sup>&</sup>lt;sup>b</sup>Molecular Biology Dept., National Research Centre, Tahrir St., Dokki, Cairo, Egypt

Carbohydr. Res. 2003, 338, 549

#### Synthesis of 2,3,4,5-tetra-O-methyl-D-glucono-1,6lactone as a monomer for the preparation of copolyesters

Inmaculada Molina Pinilla, Manuel Bueno Martínez, Juan A. Galbis

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia Química Orgánica y Farmacéutica, Universidad de Sevilla, 41071 Sevilla, Spain

Chemical modification of chitosan. Part 15: Synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan

Carbohydr. Res. 2003, 338, 557

ethyl ester as an intermediate Hitoshi Sashiwa, a Norioki Kawasaki, Atsuyoshi Nakayama, Einosuke Muraki, Hirofumi Yajima, b Naoki Yamamori, Yoshifumi Ichinose, Junzo Sunamoto, Sei-ichi Aiba

<sup>a</sup>Green Biotechnology Research Group, The Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

bDepartment of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

<sup>c</sup>Marine Technology Laboratory, Nippon Paint Co., Ltd, 19-17 Ikadanaka-machi, Neyagawa, Osaka 572-8501, Japan <sup>d</sup>Niihama National College of Technology, 7-1 Yakumo-cho, Niihama, Ehime 792-8580, Japan

X=OH, OEt, or NH-R

#### Stereospecific synthesis of chiral caprolactone monomers from D-glucose

Carbohydr. Res. 2003, 338, 563

Guylaine M. Defossemont, David J. Mincher

Department of Applied Chemical and Physical Sciences, Napier University, Edinburgh EH10 5DT, UK

D-glucose 
$$\rightarrow$$
HO
O
O
7
HO
O
N
HO
O
N
H
O
N
8

The O-specific chain structure of the major component

Carbohydr. Res. 2003, 338, 567

from the lipopolysaccharide fraction of *Halomonas magadii* strain 21 MI (NCIMB 13595)

Cristina de Castro,<sup>a</sup> Antonio Molinaro,<sup>a</sup> Rosa Nunziata,<sup>a</sup> William Grant,<sup>b</sup> Andrew Wallace,<sup>b</sup> Michelangelo Parrillia

<sup>a</sup>Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II via Cynthia 4, 80126 Napoli, Italy

<sup>b</sup>Department of Microbiology and Immunology, University of Leicester, Leicester, UK

Carbohydr. Res. 2003, 338, 571

## Effect of chlorhexidine on molecular weight distribution of fructans produced by fructosyltransferase in solution and immobilized on surface

Ramona Rozen, Gilad Bachrach, Batia Zaks, Moshe Bronshteyn, Itzhak Gedalia, Doron Steinberg Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah, PO Box 12272 Jerusalem 91120, Israel

Chlorhexidine alters the molecular weight distribution of fructans synthesized by cell-free fructosyltransferase.